MHT-CET 2004
1. If the heat of formation of CO2 is -393 kJ. The amount of heat evolved in the formation of 0.176 kg of CO2 is
- (A) -1357.9 kJ
- (B) -1275.9 kJ
- (C) -1572.0 kJ
- (D) -1165.5 kJ
2. Enthalpy (H) is equal to
- (A) internal energy (U)
- (B) product of pressure (P) and volume (V) of gas
- (C) internal energy (U) + PV
- (D) work (W) done by a system
3. For the reaction, PCI5 (g) ---> PCI3(g)+ C12(g)
- (A) △H = △U
- (B) △H > △U
- (C) △H < △U
- (D) None of these
MHT-CET 2005
4. Bond energy of hydrogen gas is - 433 kJ. How much is the bond dissociation energy of 0.5 mole of hydrogen gas?
- (A) - 433 kJ
- (B) + 433 kJ
- (C) - 216 kJ
- (D) + 216 kJ
5. Heat of formation of SO2 is -298 kJ. What is the heat of combustion of 4 g of S?
- (A) +37 kJ
- (B) -37.15 kJ
- (C) + 298 kJ
- (D) 18.6 kJ
6. 2 moles of helium gas expanded isothermally and irreversibly at 27°C from volume 1 dm³ to 1 m³ at constant pressure of 100 kPa. Calculate the work done.
- (A) 99900 kJ
- (B) 99900 J
- (C) 34464.65 kJ
- (D) 34464.65 J
MHT-CET 2006
7. The standard molar heat of formation of ethane, CO2 and water (l) are -21.1, -94.1 and -68.3 kcal respectively. The standard molar heat of combustion of ethane will be
- (A) -372 kcal
- (B) 162 kcal
- (C) -240 kcal
- (D) 183.5 kcal
8 In a closed container, a liquid is stirred with a paddle to increase the temperature. Which of the following is true?
- (A) △U = W ≠ 0, Q = 0
- (B) △U = W = Q ≠ 0
- (C) △U = 0, W = Q ≠ 0
- (D) W = 0, △U = Q ≠ 0
MHT-CET 2007
9. Which of the following is a path function?
- (A) Internal energy
- (B) Enthalpy
- (C) Work
- (D) Entropy
10. Hess's law is based on
- (A) Law of conservation of mass
- (B) Law of conservation of energy
- (C) First law of thermodynamics
- (D)None of these
11. For an ideal gas, the heat of reaction at constant pressure and constant volume are related as
- (A) H + U = PV
- (B) U = H + P△V
- (C) Qp = Qv + △nRT
- (D) None of these
12. For the reaction, 2H2(g) + O2(g) → 2H2O(g), (△H = -573.2 kJ) The heat of decomposition of water per mole is
- (A) 286.6 kJ
- (B) 573.2 kJ
- (C) -28.66 kJ
- (D) zero
13. The bond energy is the energy required to
- (A) dissociate one mole of the substance
- (B) dissociate bond in 1 kg of the substance
- (C) break one mole of similar bonds
- (D) break bonds in one mole of substance
MHT-CET 2008
14. 1f △U is the heat of reaction for C2H5OH(l) + 3O2(g) → 2CO2(g) + 3H2O(l) at constant volume, the △H (heat of reaction at constant pressure), at constant temperature is
- (A) △H = △U + RT
- (B) △H = △U - RT
- (C) △H = △U - 2 RT
- (D) △H = △U + 2RT
MHT-CET 2009
15. Heat of combustion of methane is - 800 kJ. What is the heat of combustion for 4 x 10^-4 kg of methane?
- (A) - 800 kJ
- (B) -3.2 x 10⁴ kJ
- (C) - 20 kJ
- (D) - 1600 kJ
16. 16 g of oxygen gas expands isothermally and reversibly at 300 K from 10 dm³ to 100 dm³. The work done is (in J)
- (A) zero
- (B) - 2875 J
- (C) +2875 J
- (D) infinite
17. At the same conditions of pressure, volume and temperature, work done is maximum for which gas if all gases have equal masses?
- (A) NH3
- (B) N2
- (C) Cl2
- (D) H2S
18. In ......... process, work is done at the expense of internal energy
- (A) isothermal
- (B) isochoric
- (C) adiabatic
- (D) isobaric
MHT-CET 2010
19. The heat of formation of water is 260 kJ. How much H2O is decomposed by 130 kJ of heat?
- (A) 0.25 mol
- (B) 1 mol
- (C) 0.5 mol
- (D) 2 mol
MHT-CET 2011
20. The heat of combustion of carbon is -393.5 kJ/mol. The heat released upon the formation of 35.2 g of CO2 from carbon and oxygen gas is
- (A) +315 kJ
- (D) -31.5 kJ
- (B) -315 kJ
- (C) -31.5 kJ
21. According to Hess's law, the heat of reaction depends upon
- (A) initial condition of reactanrs
- (B) initial and final condition of reactants
- (C) intermediate path of the reaction
- (D) end conditions of reactant
MHT-CET 2014
22. Find the correct equation.
- (A) U₂ - U¹ - H₂+ H¹ = n₂RT - n¹RT
- (B) U₂ - U¹ - H₂ - H¹ = n₂RT + n¹RT
- (C) H₂ - H¹ - U₂ + U¹ = n₂RT - n¹RT
- (D) H₂ - H¹ - U₂ + U¹ = n₂RT + n¹RT
23. Assuming enthalpy of combustion of hydrogen at 273 K is -286 kJ and enthalpy of fusion of ice at the same temperature to be +6.0 kJ. calculate enthalpy change during formation of 100 g of Ice.
- (A) + 1622 kJ
- (B) -1622 kJ
- (C) + 292 kJ
- (D) - 292 kJ
24. The work done when two moles of an ideal gas is compressed from a volume of 5m³ to 1dm³ at 300 K, under a pressure of 100 kPa is
- (A) 499.9 kJ
- (B) - 499.9 kJ
- (C) - 99.5 kJ
- (D) 42495 kJ
MHT-CET 2015
25. For which among the following reactions, change in entropy is less than zero?
- (A) Sublimation of Iodine
- (B) Dissociation of Hydrogen
- (C) Formation of water
- (D)Thermal decomposition of Calcium Carbonate
26. Given R = 8.314 JK^-1 mol^-1, the work done during combustion of 0.090 kg of ethane (Molar mass = 30) at 300 K is
- (A) - 18.7 kJ
- (B) 18.7 kJ
- (C) 6.234 kJ
- (D) - 6.234 kJ
27. Which among the following is a feature of adiabatic expansion?
- (A) △V < 0
- (B) △U < 0
- (C) △U > 0
- (D) △T = 0
28. What is the amount of work done when two moles of ideal gas is compressed from a volume of 1 m³ to 10 dm³ at 300 K against a pressure of 100 kPa?
- (A) 99 kJ
- (B) - 99 kJ
- (C) 114.9 kJ
- (D) - 114.9 kJ
MHT-CET 2016
29. Mathematical equation of first law of thermodynamics for isochoric process is
- (A) △U = Qv
- (B) -△U = Qv
- (C) Q = -W
- (D) △U = W
30. The criterion for a spontaneous process is
- (A) △G > 0
- (B) △G < 0
- (C) △G = 0
- (D) △S(total) < 0
31. Identify an extensive property amongst the following.
- (A) Viscosity
- (B) Heat capacity
- (C) Density
- (D) Surface tension
32. What is the amount of work done when 0.5 mole of methane, CH4(g), is subjected to combustion at 300K? (Given, R = 8.314 J K^-1 mol^-1)
- (A) - 2494 J
- (B) - 4988 J
- (C) + 4988 J
- (D) + 2494 J
MHT-CET 2017
33. The work done during combustion of 9 x 10^-2 kg of ethane, C2H6 (g) at 300 K is (Given: R = 8.314 J K^-1 mol^-1, Atomic mass: C = 12, H = 1)
- (A) 6.236 kJ
- (B) -6.236 kJ
- (C) 18.71 kJ
- (D) -18.71 kJ
34. Calculate the work done during compression of 2 mol of an ideal gas from a volume of 1m³ to 10 dm³ at 300 K against a pressure of 100 kPa.
- (A) -99 kJ
- (B) +99 kJ
- (C) +22.98 kJ
- (D) -22.98 k
35. The first law of thennodynattrics tbr isothermal process is
- (A) Q = -W
- (B) △U = W
- (C) △U = Qv
- (D) △U = -Qv
36. Identify the INVALID equation.
- (A) △H = ∑H(products) - ∑H(reactants)
- (B) △H = △U + P△V
- (C) △H(reaction) = ∑H(product bonds) - ∑H(reactant bonds)
- (D) △H = △U + △nRT
MHT-CET 2018
37. Which among the rollowing equations represents the first law of thermodynamics under isobaric condition?
- (A) △U = Qp - P.△V
- (B) Q = △U
- (C) △U = W
- (D) W = -Q
38. Two moles of an ideal gas are allowed to expand from a volume of 10 dm³ to 2 m³ at 300 k against a pressure of 101.325 kPa. Calculate the work done.
- (A) -201.6 kJ
- (B) 13.22 kJ
- (C) -810.6 kJ
- (D) -18.96 kJ
39. Calculate the work done during combustion of 0.138 kg of ethanol. C2H5OH(l) at 300 k. Given R = 8.314 J K^-1 mol^-1, molar mass of ethanol = 46 g mol^-1.
- (A) -7482 J
- (B) 7482 J
- (C) -2494 J
- (D) 2494 J
- (A) Qrev/T
- (B) Qrev x T
- (C) H -TS
- (D) T/Qrev
- (A) 27 cal
- (B) - 300 cal
- (C) 54 cal
- (D) - 600
- (A) -4.18 J
- (B) +423.56 J
- (C) +4.8 J
- (D) -423.56 J
- (A) N2(g) + 3H2(g) → 2NH3(g)
- (B) C(s) + O2(g) → CO2(g)
- (C) 2H2O2(l) → 2H2O(l) + O2(g)
- (D) PCl5(g) → PCl3(g) + Cl2(g)
- (A) Y - X
- (B) X + Y
- (C) -Y - X
- (D) X - Y
- (A) Modified rust law of thermodynamics
- (B) Second law of thermodynamics
- (C) First law of thermodynamics
- (D) Third law of the thermodynamics
- (A) For an isochoric process, △U = -Qv
- (B) For an adiabatic process, △U = -W
- (C) For an isobaric process, Qp = △U + W
- (D) For an isothermal process, Q = +W
- (A) 440 J
- (B) 120.32 J
- (C) 200 J
- (D) -200 J
- (A) - 44 kcal
- (B) - 88 kcal
- (C) - 22 kcal
- (D) 11 kcal
- (A) 711.7 J
- (B) 801.7 J
- (C) 472.8 J
- (D) 238.91
- (A) negative, negative
- (B) positive, positive
- (C) negative, positive
- (D)positive, negative
- (A) -1.9 kJ
- (B) 788.9 kJ
- (C) 1.9 kJ
- (D) 589.5 kJ
- (A) 49.0 kJ mol^-1
- (B) 494 kJ mol^-1
- (C) 48.4 kJ mol^-1
- (D) 404 kJ mol^-1
53. For a particular reaction, system absorbs 6 kJ of heat and does 1.5 kJ of work on its surrounding. What is enthalpy change of system?
- (A) + 7.5 kJ
- (B) +6.0 kJ
- (C) + 4.5kJ
- (D) - 1.5 kJ
- (A) -679.3 kJ mol^-1
- (B) -38.6 kJ mol^-1
- (C) 48.6 kJ mol^-1
- (D) +32.67 kJ mol^-1
- (A) Volume
- (B) Density
- (C) Melting point
- (D) Boiling Point
- (A) 11.4 kJ
- (B) -11.4 kJ
- (C) Zero kJ
- (D) 4.8 kJ
- (A) 48.07 kJ mo1^-1
- (B) 51.08 kJ mol^-1
- (C) 27.50 kJ mo1^-1
- (D) 39.06 kJ mo1-1
- (A) 29.8 J K^-1
- (B) 298.0 J K^-1
- (C) 100.0 J K^-1
- (D) 115.0 J K^-1
- (A) △sub.H = △fus.H + △vap.H
- (B) △vap.H = △sub.H + △fus.H
- (C) △fus.H = △sub.H x △vap.H
- (D) △sub.H = △fus.H - △vap.H
- (A) H2(g) + 1/2O2(g) → H2O(l)
- (B) N2(l) + O3(g) → N2O3(g)
- (C) 2CO(g) + O2(g) → 2CO2(g)
- (D) CH4(g) + 2Cl(g) → CH2Cl2(g) + 2HCl(g)
- (A) -1924.0 J
- (B) -25.325 J
- (C) -253.25 J
- (D) -190.0 J
- (A) Surface tension
- (B) Density
- (C) Heat capacity
- (D) Refractive index
- (A) 666.6 K
- (B) 375.0 K
- (C) 675.0 K
- (D) 777.0 K
- (A) CaCO3(s)
- (B) C2H5OH(l)
- (C) H2O(g)
- (D) CO2(g)
- (A) 929 kJ
- (B) 678 kJ
- (C) 427 kJ
- (D) 251 kJ
- (A) -5744 J
- (B) -1436 J
- (C) -2872 J
- (D) -43081 J
- (A) -6728 kJ mol^-1
- (B) -672.8 kJ mol^-1
- (C) -3264.2 kJ mol^-1
- (D) -1632 kJ mol^-1
- (A) △H = △U - 2RT
- (B) △H = △U + RT
- (C) △H = △U - RT
- (D) △H = △U + 2RT
- (A) -x3 + 2x1 + 3x3
- (B) -x1 - x2 + x3
- (C) x1 + x2 - x3
- (D) -2x1 - 3x2 + x3
- (A) 4x kJ
- (B) 2x kJ
- (C) 16x kJ
- (D) x/2 kJ
- (A) Both are intensive properties
- (B) Intensive and extensive properties respectively
- (C) Both are extensive properrties
- (D) Extensive and intensive properties respectively
- (A) △H + △U = RT
- (B) △H + △U = -RT
- (C) △H - △U = 2RT
- (D) △H - △U = RT
- (A) 11 kJ
- (B) 46 kJ
- (C) 32 kJ
- (D) 22kJ
- (A) △S > 0, △H < 0, △G < 0 at all temperature
- (B) △S < 0, △H > 0, △G > 0 at low temperature
- (C) △S < 0, △H > 0, △G > 0 at high temperature
- (D) △S < 0. △H > 0, △G > 0 at all temperature
- (A) 8.32 JK^-1
- (B) 98.3 JK^-1
- (C) 68.21 JK^-1
- (D) -10.0 JK^-1
- (A) -607.8 J
- (B) -60.8 J
- (C) -30.4 J
- (D) -6.0 J
- (A) +2778.0 kJ
- (B) -1326.0 kJ
- (C) +42.0 kJ
- (D) -4188 kJ
- (A) -0.7 x 10³ J
- (B) -9 x 10² J
- (C) -9 x 10³ J
- (D) -1 x 10³ J
- (A) 5.8 kJ
- (B) 10.8 kJ
- (C) -10.2 kJ
- (D) 8.0 kJ
- (A) 205.6 kJ
- (B) 102.8 kJ
- (C) 72.28 kJ
- (D) 49.80 kJ
- (A) 4002 kJ
- (B) 4000 kJ
- (C) 2000 kJ
- (D) 6000 kJ
- (A) 3
- (B) 2
- (C) 1.5
- (D) 1
- (A) -7.191 kJ mol^-1
- (B) -2.763 kJ mol^-1
- (C) -5.527 kJ mol^-1
- (D) 16.63 kJ mol^-1
- (A) absolute entropy
- (B) formal entropy
- (C) residual entropy
- (D) standard entropy
- (A) 2.86 kJ
- (B) 57.2 kJ
- (C) 5.72 kJ
- (D) 28.6 kJ
- (A) -92.6 kJ
- (B) -46.3 kJ
- (C) -185.2 kJ
- (D) -138.9 kJ
- (A) -2 kJ
- (B) +8 kJ
- (C) -8 kJ
- (D) +6 kJ
- (A) △U - RT
- (B) △U + 2RT
- (C) △U + RT
- (D) △U - 2RT
- (A) 2334 kJ
- (B) 435 kJ
- (C) 946 kJ
- (D) 1305 kJ
- (A) -74.8 kJ mol^-1
- (B) -112.2 kJ mol^-1
- (C) -37.4 kJ mol^-1
- (D) 112.2 kJ mol^-1
following is correct?
- (A) W = 500 J, △U = 0
- (B) Q = 500J, W = 0
- (C) △U = -0.5 J, Q = -500 J
- (D) Q = -500 J, △U = 0
- (A) -34.58 kJ
- (B) -3.458 kJ
- (C) 3.458 kJ
- (D) -1.725 kJ
- (A) 1172 kJ
- (B) 6600 kJ
- (C) 2344 kJ
- (D) 1758 kJ
- (A) △H = +ve, △S = +ve, △G = -ve
- (B) △H = +ve, △S = -ve, △G = +ve
- (C) △H = -ve, △S = -ve, △G = -ve
- (D) △H = -ve, △S = +ve, △G = -ve
- (A) 2
- (B) 3
- (C) 1.5
- (D) 1
- (A) 57.24 kJ
- (B) -17.58 kJ
- (C) 4.85 kJ
- (D) -4.85 kJ
- (A) Density
- (B) Surface tension
- (C) Specific heat
- (D) Volume
- (A) △H = △U + 2 RT
- (B) △H = △U + RT
- (C) △H = △U - 2 RT
- (D) △H = △U - RT
- (A) - 409.9 kJ
- (B) - 99.5 kJ
- (C) 424.95 kJ
- (D) 499.9 kJ
- (A) SO2(g) + NO2(g) → SO3(g) + NO(g)
- (B) N2(g) + O2(g) → 2NO(g)
- (C) H2(g) +I2(g) → 2HI(g)
- (D) 2SO2(g) + O2(g) → 2SO3(g)
- (A) -800 kJ
- (B) -3.2 x 10^4 kJ
- (C) -280 kJ
- (D) -20 kJ
- (A) microscopic properties of system
- (B) macroscopic properties of the. system
- (C) rates at which physical and chemical processes occur
- (D) the path between the two states of the system
- (A) △H = +ve, △S = +ve, △G = -ve
- (B) △H = + ve, △S = -ve, △G = +ve
- (C) △H = -ve, △S = +ve, △G = -ve
- (D) △H = -ve, △S = -ve, △G = + ve
- (A) - 98.9 J K^-1 mol^-1
- (B) Zero
- (C) 129.4 J K^-1 mol^-1
- (D) - 29.4 J K^-1 mol^-1
- (A) Q < W
- (B) Q = -W
- (C) Q = W
- (D) Q > W
- (A) 7.5 mol
- (B) 2.75 mol
- (C) 5.5 mol
- (D) 0.275 mol
- (A) 698.1 K
- (B) 650.0 K
- (C) 823.0 K
- (D) 425.0 K
- (A) Carbon dioxide
- (B) Acetylene
- (C) Ethylene
- (D) Ethane
- (A) entropy of solid equal to 0 at T = 0
- (B) entropy of solid equal to 0 at T = 273 K
- (C) entropy of solid greater than 0 at T = 273 K
- (D) entropy of solid greater than 0 at T = 0 K
- (A) +10 kJ
- (B) -110 kJ
- (C) -10 kJ
- (D) -50.15 kJ
- (A) 248 kJ
- (B) 310 kJ
- (C) 372 kJ
- (D) 284 kJ
- (A) H2(g) + 1/2O2(g) → H2O(l) + 286 kJ
- (B) 2KClO3(s) → 2KCI(s) + 3O2(g) + 78 kJ
- (C) N2(g) + 2O2(g) → 2NO2(g) - 66.4 kJ
- (D) CH4(g) + 2O2(g) → CO2(g) + 2H2O(l) + 890 kJ
- (A) -3267.9 kJ mol^-1
- (B) -816.9 kJ mor^-1
- (C) -2439.2 kJ mo^-1
- (D) -1633.9 kJ mol^-1
- (A) a3 -1/2a1 + 3/2a2
- (B) a3 -(1/2 a1 + 3/2a2)
- (C) a2 -(1/2a1 + 3/2a2)
- (D) a1 -(1/2a3 + 3/2a2)
- (A) 20.26 J
- (B) 54.40 J
- (C) 40.52 J
- (D) 26.20 J
- (A) 27 g
- (B) 40 g
- (C) 36 g
- (D) 22.5 g
- (A) 2KClO3(s) →2KCl(s) + 3O2(g) + 78 kJ
- (B) N2(g) + 2O(g) →2NO2(g) - 66.4 kJ
- (C) CH4(g) + 2O2(g) → CO2(g) + 2H2O(l) + 890 kJ
- (D) H2(g) + 1/2O2(g) → H2O(l) + 286 kJ
- (A) 300 K
- (B) 250 K
- (C) 350 K
- (D) 400 K
- (A) the absolute entropy of one mole of a pure substance at 1 atm and 25 °C
- (B) the absolute entropy of one mole of a pure substance at 1 atm and 298 °C
- (C) the absolute erampy of one mole of a pure substance at 700 mm pressure and 25 °C
- (D) the absotute entropy of one gram of a pure substance at 1 atm and 298 °C
- (A) -1037.4 kJ
- (B) -2593.5 kJ
- (C) -51.87 kJ
- (D) -5.187 kJ
- (A) 5kJ
- (B) - 5kJ
- (C) -25 kJ
- (D) 25 kJ
- (A) 4.267 x. 10^4 kJ
- (B) 4.267 x 10³ kJ
- (C) 1.896 x 10^4 kJ
- (D) 2.896 x 10³ kJ
- (A) 2CO(g) + O2 → 2CO2(g)
- (B) H2O(l) △ H2O(g)
- (C) H2(g) + Br(g) → 2HBr(g)
- (D) PCl5(g) → PCl3(g) + Cl2(g)
- (A) △H - △n = △URT
- (B) △H = △U - RT
- (C) △H = △nRT
- (D) △H - △U = △nRT
- (A) 1386.0 kJ
- (B) 346.5 kJ
- (C) 693.0 kJ
- (D) 1039.5 kJ
- (A) 213 kJ mol^-1
- (B) 180 kJ mol^-1
- (C) 360 kJ mol^-1
- (D) 425 kJ mol^-1
- (A) 65.32 kJ
- (B) 326.6 kJ
- (C) 16.33 kJ
- (D) 32.66 kJ
- (A) Internal energy
- (B) Mass
- (C) Volume
- (D) Melting point
- (A) △H and △S both positive at low temperature.
- (B) △H = negative, △S = positive, at all temperatures.
- (C) △H = positive, △S = negative at all temperatures.
- (D) △H and △S both negative at high temperature.
- (A) -32.8 kJ
- (B) -18.6 kJ
- (C) -37 kJ
- (D) -20.4 kJ
- (A) J K^-1 mol^-1
- (B) kg m² s^-2
- (C) kg m^-1 s^-2
- (D) kg m^-2 s²
- (A) 11.054 kJ mo1^-1
- (B) 2.763 kJ mo1^-1
- (C) 5.527 kJ mol^-1
- (D) -5.527 kJ mol^-1
- (A) 45 g
- (B) 33 g
- (C) 40 g
- (D) 27 g
- (A) △H = +ve or -ve, △S = 0, △G = 0
- (B) △H = -ve, △S = +ve, △G = -ve
- (C) △H = +ve, △S = -ve, △G = +ve
- (D) △H = -ve, △S = -ve, △G = -ve or +ve
- (A) 4000 kJ
- (B) 6000 kJ
- (C) 2000 kJ
- (D) 4002 kJ
- (A) The spontaneous flow of heat is always unidirectional from high to low temperature.
- (B) The total internal energy of an isolated system is constant.
- (C) Total energy of universe is constant.
- (D) When one form of energy disappears, exactly equivalent amount of other form must appear.
- (A) Y - 2X kJ
- (B) 2X - Y kJ
- (C) (Y - 2X)/2 kJ
- (D) (2X - Y)/2 kJ
- (A) 4000 J
- (B) 1000 J
- (C) 1500 J
- (D) 2500 J